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1 Introduction

Skinning is the process of controlling deformations of a given object using a set of deformation primitives. A typical example of an
object often subjected to skinning is the body of a virtual character. In this case, the deformation primitives are rigid transformations
associated with bones of an animation skeleton. Later we will see that this is not the only possibility. Also, skinning can be
well defined even without any skeleton. At a high level, the landscape of skinning algorithms can be divided into two main
streams: direct and variational methods. Variational methods pose the task as an optimization problem, minimizing an objective
function (deformation energy). Variational methods are rooted in continuum mechanics and the theory of elasticity and typically
require iterative solvers. The focus of this part is on direct skinning methods, which have been developed in order to sidestep the
high computational requirements of variational methods. Direct methods compute the resulting deformations using closed-form
expressions, i.e., without any numerical optimization. Direct methods are often very fast and embarrassingly parallel, which makes
them particularly attractive for interactive, real-time applications and GPU implementations.

2 Linear blend skinning

Linear blend skinning, also known as skeleton-subspace deformation, (single-weight-)enveloping, or matrix-palette skinning, is the
basic and most well known algorithm for direct skeletal shape deformation. It is difficult to trace the roots of linear blend skinning.
Some of the early ideas appeared in the pioneering works [Badler and Morris 1982] and [Magnenat-Thalmann et al. 1988]. Perhaps
the first paper that gives an exact mathematical description of linear blend skinning is due to Lewis [2000], but it mentions the
algorithm is well-known and implemented in commercial software packages. Linear skinning assumes the following input data:

• Rest pose shape, typically represented as a polygon mesh. The mesh connectivity is assumed to be constant, i.e., only vertex
positions will change during deformations. We denote the rest-pose vertices as v1, . . . ,vn ∈ R3. It is often convenient
to assume that vi are in fact R4 vectors with the last coordinate equal to one, according to the common convention of
homogeneous coordinates.

• Bone transformations, represented using a list of matrices T1, . . . ,Tm ∈ R3×4. The matrices Ti can be conveniently
defined using an animation skeleton; in this case they corresponds to spatial transformations aligning the rest pose of bone i
with its current (animated) pose. Bone transformations are typically the only quantity that is allowed to vary during the course
of an animation.

• Skinning weights. For vertex vi, we have weights wi,1, . . . , wi,m ∈ R. Each weight wi,j describes the amount of influence
of bone j on vertex i. A common requirement is that wi,j ≥ 0 and wi,1 + · · ·+ wi,m = 1 (partition of unity).

These concepts are best illustrated with an example; see Figure 1 for an example of bone transformations and Figure 2 for influence
weights. Linear blend skinning computes deformed vertex positions v′i according to the following formula:

v′i =

m∑
j=1

wi,jTjvi =

(
m∑

j=1

wi,jTj

)
vi (1)

The latter form highlights the fact that the rest pose vertex vi is transformed by a linear combination (blend) of bone transformation
matrices Tj . These matrices are the deformation primitives of linear blend skinning, i.e., elementary building blocks of deformations.
While arbitrary affine transformations are allowed, sometimes it is convenient to assume that Tj are rigid body transformations, i.e.,
Tj ∈ SE(3). Note that many implementations assume that most of the weights wi,1, . . . , wi,m are zero. Due to graphics hardware
considerations, it is common to assume there are at most four non-zero weights for every vertex; different limits can be found in
some systems. Some older games used a variant dubbed rigid skinning which corresponds to allowing only one influencing bone
per vertex. With increasing polygon budgets, linear blend skinning quickly replaced rigid skinning because it allowed for smooth
transitions between individual transformations (some systems used the term smooth skinning). The design of high quality skinning
weights is far from trivial and will be covered in the second part of these notes by Alec Jacobson.

Linear blend skinning works very well when the blended transformations Tj are not very different. Issues arise if we need to blend
transformations which differ significantly in their rotation components. It is a well known fact that a linear combination of rotations is
no longer a rotation [Alexa 2002]. Geometrically, this is a consequence of the fact that the Lie group of 3D transformations, SO(3),
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is not a linear (“flat”) space, but a curved manifold. Just like the curvature of the Earth rarely bothers us in everyday life, this is not a
big problem if the blended transformations Tj are close. However, consider what happens if we need to blend these two rotations:

R1 =

 1 0 0
0 1 0
0 0 1

 , R2 =

 −1 0 0
0 −1 0
0 0 1


i.e., R1 is the identity and R2 is rotation about the z-axis by 180 degrees (translations are not relevant in this example). Linear
blend 0.5 ·R1 + 0.5 ·R2 results in a rank-1 matrix, projecting the 3D space onto the z-axis. Transformation of a shape by this
matrix typically results in undesirable deformations. Large relative rotations are not uncommon in skinning, because joints such
as shoulders, wrists, or even elbows often exhibit a rather large range of motion. This problem is so common it earned a name: a
candy-wrapper artifact, see Figure 3. In addition to this problem, it is obvious that linear blend skinning has only a limited number
of parameters. One possibility to expand the expressive power of linear blend skinning is by using more transformations, typically
calculated from the original bone transformations by non-linear procedures [Weber 2000; Mohr and Gleicher 2003; Kavan et al.
2009]. Alternatively, it is possible to enrich the space of skinning weights, leading to methods which are still linear, but feature more
parameters than linear blend skinning. We call these techniques multi-linear and we explore them in the following section.

3 Multi-linear skinning methods

While the candy-wrapper artifacts of linear blend skinning (Figure 3) cannot be fixed by changing weights, it turns out that introducing
more weights helps, at least to some extent. This indicates that linear blend skinning is not the most general linear model – so, what
is? We assume that the rest-pose shape and the skinning weights are properties of the object and are not changing during the course
of an animation. The only quantity which changes during animation are the transformations T1, . . . ,Tm ∈ R3×4. Therefore, the
most general linear skinning model is simply a linear function which consumes all of the transformations (12m scalars) as input, and

M1

M2

Figure 1: Bone transformations (lower and upper arm bones) for one example deformed pose.

Figure 2: Influence weights corresponding to lower and upper arm bones.
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produces the deformed vertex positions (3n scalars). A convenient tool here is vectorization, i.e., an operator vec(Tj) = tj which
converts a R3×4 matrix into a R12×1 vector by stacking the individual columns. For more details, we recommend the Wikipedia page
http://en.wikipedia.org/wiki/Vectorization_(mathematics). Subsequently, we stack all of the tj vectors
into t ∈ R12m×1. Following the same convention, we can stack all of the deformed vertex positions v′i ∈ R3 into one long vector
v′ ∈ R3n. Now, we can define a general linear skinning model:

v′ = Xt (2)

where X ∈ R3n×12m is a matrix of parameters. It will be useful to split this matrix into blocks Xi,j ∈ R3×12 where i = 1, . . . , n
and j = 1, . . .m. Each Xi,j corresponds to a vertex-bone pair and has, in its most general form, 36 degrees of freedom. It is
interesting to think how linear blend skinning relates to this form. Specifically, what is the X matrix corresponding to linear blend
skinning (Equation (1))? This question can be elegantly answered using Kronecker products – a special type of matrix multiplication
which is closely related to the vectorization operator. In general, the Kronecker product of matrices A ∈ Rp×q and B ∈ Rr×s is:

A⊗B =

 a1,1B · · · a1,qB
...

. . .
...

ap,1B · · · ap,qB

 ∈ Rpr×qs (3)

Kronecker products exhibit a number of interesting properties, summarized at http://en.wikipedia.org/wiki/Kronecker_
product. Here, we will need the following property, which assumes that matrices A and B can be multiplied together, i.e., q = r.
In that case,

vec(AB) = (Is ⊗A) vec(B) = (BT ⊗ Ip) vec(A) (4)

where Is ∈ Rs×s and Ip ∈ Rp×p are identity matrices. Let us apply this to the linear blend skinning formula (Equation (1)):

v′i = vec(v′i) =

m∑
j=1

vec(Tj(wi,jvi)) =

m∑
j=1

(wi,jv
T
i ⊗ I3)tj =

m∑
j=1

XLBS
i,j tj = XLBS

i t (5)

where XLBS
i,j = wi,jv

T
i ⊗ I3 ∈ R3×12 and XLBS

i = [XLBS
i,1 , . . . ,XLBS

i,m ] ∈ R3×12m. We can write out each XLBS
i,j block even

more explicitly: if we denote the coordinates of vi = (vi,1, vi,2, vi,3)T, we have

XLBS
i,j = [wi,jvi,1I3 | wi,jvi,2I3 | wi,jvi,3I3 | wi,jI3] (6)

This reveals that the classical linear blend skinning (Equation (1)) is a rather special form of general linear skinning. We are not aware
of any work exploring the fully general 36-parameter linear skinning model (Equation (2)). The closest instance is Multi-Weight
Enveloping (MWE) [Wang and Phillips 2002], which advocates a linear model with twelve weights per each vertex-bone pair:

XMWE
i,j =

 w1
i,jvi,1 0 0 w4

i,jvi,2 0 0 w7
i,jvi,3 0 0 w10

i,j 0 0
0 w2

i,jvi,1 0 0 w5
i,jvi,2 0 0 w8

i,jvi,3 0 0 w11
i,j 0

0 0 w3
i,jvi,1 0 0 w6

i,jvi,2 0 0 w9
i,jvi,3 0 0 w12

i,j


Notice that one weight of classical linear blend skinning, wi,j is replaced by w1

i,j , . . . , w
12
i,j ∈ R. As demonstrated by Wang and

Phillips [2002], this results in a more powerful linear method which can avoid candy-wrapper artifacts. The problem is that there
are twelve times as many weights. Their design is more complicated, because these more general weights no longer have a simple
intuitive interpretation as in classical linear blend skinning (see Figure 2). Instead, the MWE weights are optimized using a set of
example shapes [Wang and Phillips 2002]. This assumes that these example shapes have been prepared by artists, which makes this
method related to example-based skinning techniques, covered in more detail in the third section of this course by J. P. Lewis.

Rest pose Dual quaternions: twistLinear blend skinning Dual quaternion skinning

Figure 3: An elastic bar in the rest pose (left) with two bones. A 180 degrees twist of the right bone (lighter gray) results in a
candy-wrapper artifact (middle). The central cross-section is transformed by a projection matrix, which collapses the entire edge
loop to a single point. This behavior can be avoided with dual quaternion skinning (right).
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Another linear skinning model is Animation Space [Merry et al. 2006a]. Merry and colleagues observed that not all of the 12 weights
of MWE are useful and proposed a linear model which uses only 4 weights per vertex-bone pair. While this makes Animation Space
seemingly less powerful than MWE, it turns out that Animation Space enforces world-space rotation invariance, i.e., it deliberately
looses the ability to treat individual world coordinates differently. This feature does not seem to be very practical, because it is natural
to assume that a world-space rotation of all transformations T1, . . . ,Tm will rotate but not otherwise deform the resulting vertices
v′i. This world-space rotation invariance corresponds to the classical requirement from elasticity, i.e., the total elastic energy should
not depend on global world-space rotations. Note that it is perfectly reasonable for elastic deformations to depend on material-space
rotations; only isotropic materials are invariant also to material-space rotations. In the following, we derive the general form of
rotation invariant linear skinning.

If we denote T = [T1, . . . ,Tm] ∈ R3×4m, we can express the requirement of world-space rotation invariance as:

∀T ∈ R3×4m, ∀R ∈ SO(3) : Xi vec(RT) = RXi vec(T) (7)

Applying Equation (4) transforms this equation into:

Xi(I4m ⊗R)t = RXit (8)

where t = vec(T) as before. Because Equation (8) must be satisfied for arbitrary t, it follows that:

Xi(I4m ⊗R) = RXi (9)

If we look at Xi as a collection of 3 × 3 blocks, Equation (9) requires that each such block Y ∈ R3×3 commutes with R, i.e.,
YR = RY. Because this must be true for all R ∈ SO(3), it is not difficult to prove that this implies that Y is a scaled identity,
i.e., Y = αI3, α ∈ R (sketch of a proof: choose a few specific matrices R and massage the resulting system of linear equations).
Therefore, if a general linear skinning method (Equation (2)) is world-space rotation invariant, its corresponding Xi,j blocks must
have the following structure:

Xi,j = [yi,j,1I3 | yi,j,2I3 | yi,j,3I3 | yi,j,4I3] (10)

i.e., the original 36 degrees of freedom reduce to four: yi,j,1, yi,j,2, yi,j,3, yi,j,4 ∈ R. An additional restriction will follow from
considering translation invariance: global world-space translations can only translate but not otherwise deform the resulting vertices
v′. Formally, if d ∈ R12m×1 is a global translation, i.e., stack of vectors (0, 0, 0, 0, 0, 0, 0, 0, 0, x, y, z)T ∈ R12×1, we require:

Xi(t + d) = Xit + d (11)

Combined with Equation (10), it follows that rotation and translation invariance requires

m∑
j=1

yi,j,4 = 1 (12)

The total number of degrees of freedom per vertex is therefore 4m − 1. A linear skinning model satisfying Equation (10) and
Equation (12) is exactly the Animation Space introduced by Merry and colleagues [Merry et al. 2006a]. From the discussion above
it follows that Animation Space is the most general linear skinning method invariant to world-space rotations and translations.
Similarly to multi-weight enveloping, Animation Space weights are also learned from a set of examples and are able to suppress
candy-wrapper artifacts.

Some intuition can be gained by considering this formulation which is practically equivalent to Animation Space:

v′i =

m∑
j=1

wi,jTjvi,j (13)

The only difference to the classical linear blend skinning (Equation (1)) is that we allow a different rest-pose for each transformation,
i.e., we have vi,j ∈ R3 instead of just vi ∈ R3. Classical linear blend skinning (Equation (1)) can be interpreted as transforming
the rest-pose mesh by each transformation, and blending the results using vertex weights. In Animation Space, we allow each
transformation to have a different rest pose. The individual “imaginary” rest poses are never revealed to the user directly, because the
resulting v′ always blends them together, even if all of the transformations T1, . . . ,Tm are identities. This indicates that Animation
Space is in fact a special case of example-based skinning methods, featuring a particularly elegant mathematical formulation.

Further generalizations of linear skinning methods, going beyond Equation (2), are possible by considering more general transfor-
mations than the classical affine transformations T1, . . . ,Tm ∈ R3×4. One specific example is presented by Park and Hodgins
[2006], who consider quadratic transformations represented by 3× 9 matrices (see also [Müller et al. 2005]). With this more liberal
mindset, clustered PCA applied to animated sequences [Sattler et al. 2005] can be also viewed as a special type of a linear skinning
method. The idea of clustered (local) PCA is to split the input mesh into several disjoint components, each of which is subjected to
classical (global) PCA [Alexa and Müller 2000]. Even closer to skinning are linear techniques which allow for overlaps between the
individual components, such as the SPLOCs model [Neumann et al. 2013]. Data-driven skinning techniques are discussed in more
detail in the final part of this course by Zhigang Deng.
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4 Nonlinear skinning methods

Linear skinning methods are popular due to their efficient implementations and well understood mathematical properties, making
them well suited for use as building blocks in more complex algorithms, e.g., in physics-based simulation [Faure et al. 2011].
However, as we have seen in the previous section, candy-wrapper artifacts can only be avoided using more parameters, which have
to be learned, stored, and retrieved at runtime. Even then, some amount of undesired shrinking can still remain. The fundamental
problem is that linear blending of rotations, i.e., elements of SO(3), does not respect the fact that SO(3) is a curved manifold. The
idea of replacing linear blending with manifold-intrinsic averages leads us to nonlinear skinning methods.

A manifold-intrinsic interpolation method between two 3D rotations is SLERP (Spherical Linear Interpolation), introduced by Ken
Shoemake [1985]. Even though SLERP can be formulated purely with matrices, Shoemake recognized the advantages of quaternions:
3× 3 matrices contain 9 degrees of freedom and therefore require 6 constraints to represent rotations. Quaternions, on the other hand,
feature only 4 degrees of freedom and therefore require only one constraint to represent rotations. Specifically, rotations correspond
to unit quaternions, i.e., quaternions with length one. Formally, we denote the set of unit quaternions as Q1 = {q ∈ Q : ||q|| = 1}.
Geometrically, unit quaternions form a 3D unit hyper-sphere in 4D Euclidean space. While this is difficult to visualize, it is often
sufficient to appeal to the intuition of the familiar 2D sphere in 3D Euclidean space (or even a unit circle in 2D).

Mathematicians are hardly impressed by the fact that quaternions require only 4 scalars as opposed to 9; worse, quaternions are
sometimes incorrectly assumed to be just a different semantics to describe the group of 3D rotations. This is incorrect because the
groups Q1 and SO(3) are not homomorphic. The catch is the fact that the two quaternions q and −q represent exactly the same
rotation, i.e., the group Q1 is covering SO(3) twice. This is called the “double cover” property [Hanson 2005] and it is the main
reason why quaternions are very practical in skinning; let us explain this in more detail.

Consider uniform rotation of a rigid body about the z-axis (for example). Starting from the identity, i.e., no rotation, we eventually
perform one full revolution, i.e., a 360 degrees rotation. Rotation matrices do not distinguish between 0 and 360 degrees rotation.
Interestingly, quaternions do: a 360 degrees rotation will correspond to quaternion −1. The sign distinguishes between 0 degrees
rotation (corresponding to +1) and 360 degrees rotation (corresponding to−1). Note that the formulas for converting from quaternion
to matrix [Shoemake 1985] are quadratic and cancel the sign, i.e., after conversion to a matrix, the distinction between q and −q
disappears. If we keep rotating our object beyond 360 degrees, we will eventually reach two full revolutions, i.e., 720 degrees
rotation. Two full revolutions are not remembered by quaternions, i.e., a 720 degrees rotation is equivalent to 0 degrees rotation in
both rotation matrices and quaternions. This interesting feature of quaternions can be observed in the real world; see, for example,
the “Dirac’s belt trick” [Hanson 2005].

In terms of blending rotations and, consequently, skinning, the important consequence is that the Q1 manifold is “less non-linear”
than SO(3). This is illustrated in Figure 4. In the left part of the figure, R1 and R2 ∈ SO(3) differ by a 180 degrees rotation
(I ∈ SO(3) is the identity). A linear average of R1 and R2 results in a singular matrix. In the right part of the figure, the same
situation is depicted on the Q1 manifold. In particular, q1,q2 are unit quaternions corresponding to R1,R2, and 1 ∈ Q is one,
interpreted as a quaternion. Note that q1 and q2 are much closer than R1 and R2. This is because one full loop corresponds to a 720

R1

R2

I

SO(3)

Figure 4: Illustration of the geometry of rotations (SO(3), left), compared to unit quaternions (Q1, right).

degrees revolution in Q1, but only to 360 degrees in SO(3). In other words, distances between rotations in Q1 are twice as small as
the corresponding distances in SO(3). As a result, linear averaging of q1 and q2 is now much more accurate, as is obvious from
Figure 4. The line connecting q1 and q2 is much closer to the manifold and does not pass through a singularity. This benefit does
not come for free, however, because we need to be careful about picking the signs during matrix to quaternion conversion: wrong
signs can lead to a typically undesired long-arc interpolation. Note that projection of a non-unit quaternion on the Q1 manifold is
extremely simple: q/‖q‖.

The SLERP algorithm has been generalized to more than 2 rotations by Buss and Fillmore [2001], however, resulting in an iterative
procedure. Because fully accurate blending of rotations is not necessary in skinning, it is possible to approximate the correct
manifold-intrinsic averages by linear combination of unit quaternions, followed by normalization (projection on Q1). This has been
utilized in early quaternion-based skinning methods such as [Hejl 2004] and [Kavan and Žára 2005]. The practical impact of these
techniques is limited due to their handling of the translational component of the skinning transformations.
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Skinning transformations T1, . . . ,Tm ∈ R3×4 typically contain a non-trivial translation vector. Assuming that the left 3 × 3
submatrices of T1, . . . ,Tm are rotations, a straightforward solution is to blend the rotations and translations independently. Linear
blending of translations is perfectly justified, because translation vectors form a linear space, not a curved manifold. If we implement
this approach we find out that, even with perfectly intrinsic rotation blending [Buss and Fillmore 2001], the results are not acceptable
– often much worse than with linear blend skinning, see Figure 5. The reasons for this behavior are discussed in detail in [Kavan
et al. 2008]. In short, by splitting a rigid transformation into a rotation and translation pair, we are committing to a specific pivot
point (center of rotation), around which the rotations will be interpolated. By default, this center of rotation corresponds to the
origin of material-space coordinates, which is typically located near the object’s center of mass – this explains the unusual result in
Figure 5(left).

Figure 5: Separate blending of rotation and translation components leads to unacceptable results (left), worse than standard linear
blend skinning (right).

It is of course possible to design a more suitable center of rotation, e.g., coinciding with the joint [Hejl 2004], or computed using
least squares optimization [Kavan and Žára 2005]. However, it is possible to find situations where each of these strategies results
in artifacts [Kavan et al. 2008]. The latter paper shows that the complications with the choice of the center of rotation disappear
if we use unit dual quaternions to represent rigid body transformations. The reason is that unit dual quaternions represent rigid
transformations using their intrinsic parameters, thus avoiding an explicit choice of a center of rotation. Dual quaternions are closely
related to screw motions studied in theoretical kinematics [McCarthy 1990].

While the underlying mathematics may not be trivial, an actual implementation of dual quaternion skinning is quite straightforward.
First, the transformation matrices T1, . . . ,Tm ∈ R3×4 are converted to unit dual quaternions. These unit dual quaternions are
blended linearly, similarly to linear blend skinning (Equation (1)). Because linear combination of unit dual quaternions does not in
general produce a unit dual quaternion, a normalization (projection) operation is performed. The resulting unit dual quaternion can
be converted to a matrix which transforms a rest-pose vertex vi. The double cover property of regular quaternions occurs also in dual
quaternions; specifically, unit dual quaternions from a double cover of SE(3). It is therefore imperative to carefully choose signs of
the dual quaternions obtained by converting matrices Tj . Note that all steps in this algorithm are simple closed-form operations.
While linearity is lost (due to the projection on unit dual quaternions), the resulting algorithm does not require any iterations and can
be implemented very efficiently.

Dual quaternion skinning successfully eliminates the candy-wrapper artifacts (see Figure 3), but has a number of limitations, which
we discuss in the following. A relatively benign issue is that linear blending of unit dual quaternions followed by normalization (Dual-
quaternion Linear Blending, DLB) is not perfect manifold-intrinsic averaging, similarly to the SO(3) case illustrated in Figure 4. A
completely intrinsic blending can be achieved by applying Lie-algebraic averaging [Govindu 2004], which is a generalization of
spherical averages [Buss and Fillmore 2001]. A dual quaternion version of Lie-algebraic averaging has been discussed in [Kavan
et al. 2008] (Algorithm DIB). For shortest path interpolations, the differences between DLB and DIB are insignificant; in applications
such as skinning the differences between DLB and DIB are barely noticeable.

A more serious concern especially in a production environment are non-rigid transformations. Other than uniform scale, dual
quaternions are unable to represent non-rigid transformations, such as non-uniform scale and shear. These effects are especially
important with stylized and cartoon characters. One possibility to side-step this limitation is to break the skinning process in two
steps: in the first step, the rest-pose (including the skeleton) is rescaled. In the second step, dual quaternion skinning is applied to
produce the desired pose (articulation) [Kavan et al. 2008]. While a similar approach has been applied successfully in a production
setting (Disney’s Frozen [Lee et al. 2013]), the question of optimal blending of general affine transformations remains open. An early
investigation of this problem has been carried out by Alexa [2002], who proposes linear blending of matrix logarithms, followed by

6 of 11



SIGGRAPH Course 2014 — Skinning: Real-time Shape Deformation
Part I: Direct Skinning Methods and Deformation Primitives Ladislav Kavan

matrix exponential:

Tblend = exp

(
m∑

j=1

log(Tj)

)
(14)

From the viewpoint of Lie-algebraic averaging, the problem of this method is that the logarithms correspond to using the Lie algebra
at the identity, even if the input transformations Tj are all far away from the identity. This leads to non-shortest-path interpolations,
which has been criticized in a rather harsh way by game developers [Bloom et al. 2004]. Alexa’s method has been applied in skinning
[Cordier and Magnenat-Thalmann 2005], but its non-shortest-path nature can lead to artifacts, as shown in [Kavan et al. 2008]. An
improved method to blend affine transformations is presented by [Rossignac and Vinacua 2011], however, the problem that log(Tj)
may not exist in the real domain persists. Even if we restrict ourselves only to matrices with a positive determinant, the logarithm can
still be ill-defined if the matrix has two (real) negative eigenvalues of different magnitude. One possibility to avoid this problem is by
introducing an intermediary transformation, essentially subdividing the motion into two smaller ones [Rossignac and Vinacua 2011].
To our knowledge, this method is yet to be tested in skinning.

While the shortest-interpolation-path property makes sense when interpolating the elements of SO(3), real elastic materials can be
twisted multiple times. In this case, both rotations matrices and quaternions fall short in representing such deformations (quaternions
do remember one full revolution, but two full revolutions return us back to the starting point, i.e., are “forgotten”, see Figure 4). This
limitation of both linear and dual-quaternion-based methods inspired the work of Oztireli et al. [2013], called Differential Blending.
Differential blending assumes a connected, rooted skeleton. Skinning transformations qj are broken into smaller pieces qj,k along
the path from the root to the target bone: qj = qj,1 . . .qj,l. The main idea is that the blending of these smaller pieces can be done
with previous methods, and the blended pieces are subsequently multiplied (composed) together:

DiffBlend(wj ;qj) =

l∏
k=1

Blend(wj ,qj,k) (15)

In this formula, Blend is a standard blending operator (linear or dual quaternion) which blends input transformations using the
provided weights wj . The resulting DiffBlend takes correctly into account multiple revolutions, i.e., longer interpolation paths,
see Figure 6.

Rest pose Linear blending Dual quaternion blending Differential blending

Figure 6: Creating a corkscrew-type deformation fails with linear and dual quaternion blending. Multiple revolutions are correctly
handled by differential blending.

Another problem with dual quaternion skinning is known as a “bulging artifact” [Kavan and Sorkine 2012; Kim and Han 2014].
The problem is best explained on a simple cylinder skinned using two bones, connected with one joint (crude approximation of
the human arm, with the joint corresponding to the elbow). In this case, dual quaternion skinning reduces to spherical blending
around the joint. Spherical blending can be intuitively understood as a “point on a stick” approach: each vertex is attached to an
imaginary rigid stick linking the vertex to p. In other words, each vertex is constrained to a fixed sphere centered at p; the radius
of this sphere is ‖vi − p‖. This works very well when we are twisting the cylinder, but bending produces somewhat unnatural
bulging effects, see Figure 7. Note that this bulging effect is not always undesired: for example, when modeling knuckles of the

Rest pose Dual quaternions: twist Dual quaternions: bend Elasticity-inspired deformers

Figure 7: Demonstration of dual quaternion bulging effects while bending a cylinder. Elasticity-inspired deformers [Kavan and
Sorkine 2012] avoid this problem.
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hand. In some cases, however, the bulging is unwanted, and several strategies to eliminate it have been proposed. Observing that
linear blend skinning does not produce bulging while bending, Autodesk Maya allows users to blend the result of linear and dual
quaternion skinning. This requires an additional blending weight. The problem with this approach is that even a small amount
of linear blend skinning re-introduces the candy-wrapper artifacts, so a compromise must be sought. The swing-twist deformer
presented in [Kavan and Sorkine 2012] is based on the same observation (linear blending works well while bending), but combines
linear and dual quaternion blending in a non-linear way. Specifically, the rotation of a joint is decomposed into a swing and twist
components; the twist is blended spherically (using SLERP) and the swing is blended using linear matrix interpolation, composing
the result using matrix multiplication. This eliminates the bulging artifacts without re-introducing the candy-wrapper artifacts while
twisting. The swing-twist deformer leads us to the idea of generalized deformation primitives, discussed in the next section.

5 Deformation primitives

By deformation primitives we mean the elementary building blocks of a deformation. In linear and dual quaternion skinning, the
deformation primitives are the individual skinning transformations T1, . . . ,Tm ∈ R3×4. Intuitively, these transformations specify
how parts of the input object will deform. This is very obvious with binary skinning weights, which simply partition the input object
into several parts. Smooth skinning weights then mean that there will be smooth blending between the individual parts. In character
animation, these parts typically correspond to bones, e.g., the forearm, upper arm, etc.

While affine transformations are certainly the most common deformation primitives, there are other possibilities which present
certain benefits, pioneered by works such as [Singh and Fiume 1998; Kalra et al. 1998; Hyun et al. 2005]. For brevity, we refer to
deformation primitives as deformers. The work of Forstmann and colleagues [Forstmann and Ohya 2006; Forstmann et al. 2007]
introduces spline-based deformers, see Figure 8. The idea is to bind rest-pose vertices vi to a spline curve. Specifically, for vertex
vi we find the closest point on the spline, and bind vi to the Frenet frame at this point. At run-time, we evaluate the deformed
spline including its Frenet frames, which determine the transformation of vi. Each spline corresponds to one deformer. Multiple
spline-based deformers are blended together linearly, similarly to linear blend skinning.

Dual quaternions: twist

Linear blend skinning Dual quaternion skinning Spline skinning

Figure 8: Spline skinning offers more accurate control of deformations then linear or dual quaternion skinning.

[Gregory and Weston 2008] present an advanced version of the previous idea, called Offset Curve Deformations (OCD). OCD
supports spline and other smooth curves; for concreteness, we will assume B-spline curves. Similarly to [Forstmann et al. 2007],
OCD connects a “master” B-spline to the bones of our object, smoothing out their piecewise-linear nature. The main idea of OCD is
to associate each vertex vi with an individual B-spline, which is an offset curve of the “master” B-spline. In contrast to spline-based
skinning [Forstmann et al. 2007], this allows us to better control the distribution of the deformations, especially on the inside and
outside of a bend. Because B-splines are linear, the resulting skinning technique is also linear. It turns out that OCD is equivalent to
Animation Space, discussed in Section 3. A great benefit of the OCD technique is that its parameters can be adjusted in a user-friendly
way.

Jacobson and Sorkine [?] observed that linear or dual quaternion skinning is unable to control deformations along the bone; the
blending is constrained to a typically rather small region near the joint. Around the bone, the weights are typically binary (1 for the
closest bone and 0 for the others), which does not allow us to control deformations of the bone itself. Stretching and twisting of
bones, highly desirable e.g. with stylized or cartoon characters, can be supported by using an additional weight function, called
endpoint weight [Jacobson and Sorkine 2011]. The endpoint weight varies from 0 to 1 as we move from one bone endpoint to the
other; there is one endpoint weight for each bone. The endpoint weight provides us with the information where a vertex vi is located
with respect to the bone, which allows us to implement effects such as stretching and twisting of the bones, see Figure 9.

Focusing on deformations in the vicinity of a joint, Kavan and Sorkine [2012] propose a general concept of joint-based deformers.
A joint-based deformer is a function Γ : SO(3)× R3 → R3 which takes a joint rotation and a rest-pose vertex position as input
and produces a deformed vertex position as output. The swing-twist deformer, discussed in Section 4, is a specific example of a
joint-based deformer. Individual deformers are blended linearly, similarly to linear blend skinning. The idea is that artifacts such as
candy-wrappers will be avoided by the deformers themselves; the blending serves only to ease the transitions between the individual
deformers, assuming there are no large discrepancies between the blended deformers.
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Rest pose Dual quaternions: twistLinear blend skinning Dual quaternion skinning Stretchable-twistable bones

Figure 9: Unlike linear and dual quaternion skinning, stretchable and twistable bones [Jacobson and Sorkine 2011] allow us to
spread deformations along the length of a bone.

6 Computing normals of skinned surfaces

In the previous sections, we discussed deformations of the actual shape, represented using a polygon mesh. For rendering, it is
necessary to calculate not only deformed vertex positions v′i ∈ R3, but also their corresponding normals n′i ∈ R3. Of course,
once the deformed vertex positions v′i have been computed, the corresponding normals can be estimated by averaging normals
of adjacent triangles with appropriate weights [Botsch et al. 2010]. While easy to implement, this approach is not well suited for
parallel processing, because the normals computation step would have to wait until all v′1, . . . ,v′n have been computed. Especially
in GPU implementations of direct skinning methods, it is advantageous to calculate the deformed normals n′i along with the vertex
positions v′i.

If our model is deformed by a global linear transformation M ∈ R3×3 (translations obviously do not affect the normals), the normals
transform by its inverse transpose: M−T. With linear blend skinning, we can use this technique with Mi =

∑m
j=1 wi,jTj . For dual

quaternion skinning we can calculate the matrix Mi similarly, by blending unit dual quaternions. In either case, the normals are
computed as:

n′i = M−T
i ni (16)

While this method is straightforward and very common, the normals computed this way are not always a good approximation of the
true normals which we would obtain by averaging normals of adjacent triangles. This is because for skinned models (either linear or
dual-quat), the transformation matrix Mi changes from one vertex to another; Equation (16) is correct only in parts of the mesh where
the skinning weights are constant, i.e., Mi is constant. In areas where skinning weights have a non-trivial gradient, Equation (16)
leads to biased normals, illustrated in Figure 10. In this figure, the shape is transformed by two skinning transformations T1 and
T2. The problem is that the entire deformation has been achieved only by translating T2; the linear parts of both T1 and T2 are
identities.

Rest pose Deformed pose

Skinned normal

True normal

Figure 10: A 2D capsule object demonstrating that skinned normals can be a poor approximation of true, geometric normals.

The challenge of calculating more accurate normals of skinned surfaces has been opened by Merry et al. [2006b] and further refined
by Tarini et al. [2014]. The key idea is to assume that skinning weights are continuous functions, which allows us to define the
gradient of a weight in a particular vertex: ∇wi,j ∈ R3. Weight gradients allow us to obtain a more accurate approximation of the
Jacobian of the skinning transformation:

Ji =

m∑
j=1

wi,jTj +

m∑
j=1

Tjvi(∇wi,j)
T (17)

If we compute our normals as n′i = J−T
i ni, we obtain skinned normals that correctly account for effects such as those shown in

Figure 10. [Tarini et al. 2014] discusses many practical improvements of this idea, such as how the inversion of the Jacobian can be
avoided, and presents a detailed implementation recipe.
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7 Upcoming trends and open problems

In the previous sections, we attempted to cover the main trends in direct skinning methods. It is important to note that this list is not
exhaustive and almost certainly will change in the future. An excellent example of a recently hatched technique is Implicit Skinning
[Rodolphe et al. 2013].
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